ACM UMAP 2020

28th Conference on User Modeling, Adaptation and Personalization

Predicting User Intents and Satisfaction with Dialogue-based Conversational Recommendations

Wanling CAI and Li CHEN

Department of Computer Science Hong Kong Baptist University

DEPARTMENT OF COMPUTER SCIENCE 計算機科學系

Dialogue-based Conversational Recommender System is one type of **task-oriented** dialogue system which **assists users in seeking for recommendations** (e.g., movies, music, hotels, and restaurants).

User Intent Discovery

- Main idea: investigate user intents/goals
- Related Work

Most-frequent user intents:

- Recommendation
- Comparison
- Ask opinion
- Q&A

Three session-aware intents:

- Add filter condition
- See-more
- Negation

(Yan et al., AAAI 2017)

Identified from questions posted in the community sites

User initial query goals:

- Objective,
- Subjective
- Navigational

Follow-up query intents:

- Refine
- Reformulate
- Start over

(Kang et al., Recsys 2017)

Identified from queries prompted by pre-defined system questions

Main limitation: The user data were not collected through natural conversations.

1st Research Objective:

 To understand the dialogue-based interaction of users by analyzing their conversations with human recommenders in a multi-turn dialogue.

User Intent Prediction

- Utterance classification problem
- Previous work on conversational search and general dialogue systems

Classification Models:

Conventional Machine Learning Methods

- SVM (Bhargava et al., ICASSP 2013)
- LR (Sun et al., NIPS-SLU 2015)
- HMM (Surendran and Levow, SLP 2006)
- AdaBoost (Qu et al., CHIIR 2019)
- ★ Advantages: Able to identify important features for user intent prediction.

Deep Learning Based Methods

- CNN (Bhargava et al., ICASSP 2013)
- RNN/LSTM (Liu et al., EMNLP 2017)
- ★ Advantages: Learn high-level features from utterances to improve prediction accuracy.

But few work studied user intent prediction specific to DCRS

- Lack of a well established taxonomy
- Lack of annotated dialogue data

Features:

- Content
- Discourse
- Sentiment
- Context (new)

2nd Research Objective:

- To define various categories of feature to predict user intents specific to DCRS.
- To investigate user intent prediction task in DCRS using conventional ML methods and DL methods.

User Satisfaction Prediction

- Sequential classification problem
- Previous work on community question answering (CQA) and Intelligent assistant (IA)

However, few work investigated user satisfaction prediction specific to DCRS

Classification Models:

Conventional Machine Learning Methods

- SVM, Random Forests (Liu *et al.*, SIGIR 2008)
- LR (Mehrotra et al., WWW 2019),
- GBDT (Kiseleva et al., SIGIR 2016)
- ★ Advantages: Easy to interpret the reason of improved prediction performances

Deep Learning Based Methods

- LSTM/Bi-LSTM (Hashemi et al., CIKM 2018)
- Neural Tensor Network (Chen *et al.*, WWW 2017)
- ★ Advantages: Better capture relationships within interaction sequences.

Features:

- Utterance-level features (i.e., content, discourse, sentiment features)
- Dialogue behavior features (i.e., user intents and recommender actions)

3rd Research Objective:

 To investigate the feasibility of leveraging dialogue behavior features (involving user intents and recommender actions) to predict user satisfaction with recommendations in DCRS.

Our Research Questions

RQ1: How can we **classify users' intents and recommenders' actions** respectively in the dialogue conversation?

RQ2: How can we accurately **predict a user's intents** given her/his utterance in the recommendation dialogue?

RQ3: How does user satisfaction relate to their intents and recommender's actions in multi-turn interactions, and how can we accurately predict user satisfaction with the recommendation?

Step 1: Taxonomy of User Intents & Recommender Actions

Recommendation Dialogue Data

ReDial Dataset

human-human dialogues centered around movie recommendations (Li *et al.*, NIPS 2018)

Seeker:	
Recommender:	Another good one is <u>Spaceballs</u> .
Seeker:	I did see that one, but I didn't really like it. I do love 80s movies
	though.
Recommender:	Ok Well how about Planes, Trains and Automobiles.
Seeker:	I may have seen that a long time ago but I can't remember. who
	is in that again?
Recommender:	Steve Martin and John Candy. It is very funny.
Seeker:	I love them both. I will try that one. Thanks so much!

Statistics of our selected dialogue data (from ReDial)

Items	SAT-Dial (with user- satisfied recommendation)	unSAT-Dial (without user- satisfied recommendation)			
# Conversations	253	83			
# Human seekers	125 (# utterances: 1,711)	59 (# utterances: 550)			
# Human recommenders	151 (# utterances: 1,747)	68 (# utterances: 575)			
# Suggested movies per dialogue	4.57	4.51			
# Turns per dialogue	mean=6.58, min=3, max=19	mean=6.49, min=3, max=12			
# Words per utterance	mean=11.29, min=1, max=72	mean=10.72, min=1, max=69			

Taxonomy of User Intents (RQ1)

Intent (Code)	Description	Percentage
Ask for Recommendation		18.26%
Initial Query (IQU)	Seeker asks for a recommendation in the first query.	12.91%
Continue (CON)	Seeker asks for more recommendations in the subsequent query.	3.10 %
Reformulate (REF)	Seeker restates her/his query with or without clarification/further constraints.	1.50%
Start Over (STO)	Seeker starts a new query to ask for recommendations.	0.84%
Add Details		18.58%
Provide Preference (PRO)	Seeker provides specific preference for the item s/he is looking for.	12.30%
Answer (ANS)	Seeker answers the question issued by the recommender.	4.91%
Ask Opinion (ASK)	Seeker asks the recommender's personal opinions.	2.39%
Give Feedback		61.92%
Seen (SEE)	Seeker has seen the recommended item before.	21.14%
Accept (ACC)	Seeker likes the recommended item.	18.89%
Reject (REJ)	Seeker dislikes the recommended item.	11.50%
Inquire (INQ)	Seeker wants to know more about the recommended item.	6.55%
Critique-Feature (CRI-F)	Seeker makes critiques on specific features of the current recommendation.	6.50%
Critique-Add (CRI-A)	Seeker adds further constraints on top of the current recommendation.	5.35%
Neutral Response (NRE)	Seeker does not indicate her/his preference for the current recommendation.	4.29%
Critique-Compare (CRI-C)	Seeker requests sth similar to the current recommendation in order to compare.	1.55%
Others	Greetings, gratitude expression, or chit-chat utterances.	14.55%

Taxonomy of Recommender Actions (RQ1)

Action (Code)	Description	Percentage
Request		13.87%
Request Information (REQ)	Recommender requests for the seeker's preference or feedback.	12.58%
Clarify Question (CLA)	Recommender asks a clarifying question for more details.	1.29%
Respond		23.77%
Respond-Feedback (RES)	Recommender responds to any other feedback from the seeker.	15.89%
Answer (ANS)	Recommender answers the question asked by the seeker.	7.88%
Recommend		54.52%
Recommend-Show (REC-S)	Recommender provides recommendation by showing it directly.	32.08%
Recommend-Explore (REC-E	C)Recommender provides recommendation by inquiring about the seeker's preference	e 23.99%
Explain		37.38%
Explain-Introduction (EXP-I)) Recommender explains recommendation with non-personalized introduction.	22.83%
Explain-Preference (EXP-P)	Recommender explains recommendation based on the seeker's past preference.	13.01%
Explain-Suggestion (EXP-S)	Recommender explains recommendation in a suggestive way.	2.37%
Others	Greetings, gratitude expression, or chit-chat utterances.	29.80%

Step 2: User Intent Prediction

User Intent Prediction

Multi-label Classification Problem

For each given user utterance, the goal is to predict a subset of user intent labels. E.g., "I did see that one, but I didn't really like it. I do love 80s movies though." -> two intents: Reject and Critique-Add

- Methods
 - Classification Models 0
 - 8 Machine Learning Models: LR, SVM, Naive Bayes, XGBoost, MLP, etc.
 - 2 Deep Learning Models: CNN, Bi-LSTM.
 - **Transformation Strategies** (transform multi-label classification into single-label problem) Ο
 - Binary Relevance; (2) Classifier Chain; (3) Label Powerset. (1)
- Features

Category	Features	•	Evalua
Content	TF-IDF, Name Entity, # Relevant Items		οL
Discourse	POS, 5W1H Question, Question Mark, Exclamation Mark, Utterance Length		• F
Sentiment	Thanks, Sentiment Score, Opinion Lexicon		o F
Context	Absolute Position, Utterance Similarity, Previous user intents & recommendation actions		

- ation Metrics
 - _abel-based Accuracy
 - Precision
 - Recall
 - -1-score

Results - User Intent Prediction (RQ2)

Comparison of Classification Models

Methods		Binary R	elevance		C	lassificat	tion Chai	n	Label Powerset			
in children and a second se	Acc	Prec	Rec	F1	Acc	Prec	Rec	F1	Acc	Prec	Rec	F1
Logistic Regression	0.5796	0.7160	0.6148	0.6612	0.6111	0.6898	0.6322	0.6596	0.6198	0.6791	0.6053	0.6400
SVM	0.5597	0.6701	0.6047	0.6332	0.6293	0.7179	0.6340	0.6730	0.6048	0.6004	0.6123	0.6056
Naive Bayes	0.4438	0.5137	0.5705	0.5400	0.4567	0.5137	0.5793	0.5439	0.5365	0.5989	0.5542	0.5755
Decision Tree	0.5264	0.5187	0.6778	0.5871	0.5356	0.5513	0.6325	0.5887	0.4515	0.4706	0.4755	0.4729
Random Forest 🙏	0.5742	0.5962	0.7029	0.6449	0.5968	0.6372	0.6817	0.6583	0.4794	0.4748	0.5096	0.4913
XGBoost	0.5970	0.8169	0.6007	0.6919	0.6274	0.7957	0.6268	<u>0.7010</u>	0.6199	0.6868	0.6109	0.6463
MLP	0.4773	0.7922	0.4743	0.5928	0.5079	0.7780	0.5045	0.6115	0.6157	0.6837	0.6029	0.6407

Methods	Acc	Pre	Rec	F1
ML-KNN	0.3960	0.4347	0.4335	0.4340
CNN	0.5698	0.6773	0.5618	0.6141
BiLSTM	0.5720	0.6747	0.5794	0.6234

- ★ Classification Models: XGBoost (overall best)
- ★ Transformation Strategies: Classification Chain

Results - User Intent Prediction (RQ2)

Comparison of Feature Categories

	Cont	Disc	Sent	Context	Acc	Prec	Rec	F1	0.00						
	\checkmark				0.4726	0.7165	0.4868	0.5793	0.60] 🧹	Consid	er the prev	vious		
1 Catagory		\checkmark			0.3918	0.5224	0.3841	0.4426	0.55		utteran	, ice-respon	se pair		
I Category				\checkmark	0.3407	0.5020	0.3343	0.4011	∑o €					📥 XGBoo	ost
			\checkmark		0.1993	0.3241	0.2044	0.2498		_				SVM	Davias
	\checkmark			\checkmark	0.5603	0.7669	0.5627	0.6488	Ac						Bayes
		\checkmark		\checkmark	0.5438	0.6946	0.5346	0.6039	0.45	- /					
2 Categories	\checkmark	\checkmark			0.5291	0.7381	0.5350	0.6201							
	\checkmark		\checkmark		0.4921	0.7289	0.5067	0.5972	0.40						
			\checkmark	\checkmark	0.4587	0.6209	0.4518	0.5229			• •		I	Ţ	
		\checkmark	\checkmark		0.4268	0.5553	0.4208	0.4787		0	1 Nun	2 hber of dia	3 Ioque ti	4 Irns	5
	\checkmark	\checkmark		\checkmark	0.6119	0.7913	0.6112	0.6896	—	Cont	ont foot		moot	offootiv	1 0
2 Catagonia	\checkmark		\checkmark	\checkmark	0.5870	0.7760	0.5887	0.6692	×	Conte		$uies \rightarrow$	most	enecuv	/e
5 Categories		\checkmark	\checkmark	\checkmark	0.5698	0.7188	0.5569	0.6275	*	+ Cor	ntext fe	atures c	an si	gnifican	tly
	\checkmark	\checkmark	\checkmark		0.5415	0.7418	0.5500	0.6313		boost	t the pr	ediction	perfo	ormance	Э
All	\checkmark	\checkmark	\checkmark	\checkmark	0.6274	0.7957	0.6268	<u>0.7010</u>	*	Each	feature	e catego	ry bri	ngs	
										certa	in cont	ribution			15

Results - User Intent Prediction (RQ2)

Individual Intent Prediction

	<u> </u>							
Intent Code	Cont	Disc	Sent	Context	Prec	Rec	F1	
OTH	\checkmark	\checkmark	\checkmark	\checkmark	0.9325	0.9134	0.9224	
IQU	\checkmark	\checkmark		\checkmark	0.8985	0.8933	0.8941	achieve relatively high accuration
SEE Seen	\checkmark	\checkmark	\checkmark	\checkmark	0.7859	0.6798	0.7270	↓
ACC Accep	ot 🗸	\checkmark	\checkmark	\checkmark	0.8391	0.6416	0.7239	Y
CON	\checkmark			\checkmark	0.8014	0.5429	0.6294	-
INQ	\checkmark	\checkmark	\checkmark	\checkmark	0.6910	0.5352	0.5923	
PRO Provid	le Prڎfero	ence	\checkmark	\checkmark	0.7302	0.4930	0.5821	
ANS	\checkmark	\checkmark		\checkmark	0.6182	0.5053	0.5471	
REJ Rejea	ct 🗸	\checkmark	\checkmark		0.6704	0.4500	0.5357	

It is still challenging to identify some intents, e.g., *Provide Preference, Reject, Critiquing-Feature, Critiquing-Add.*

Step 3: User Satisfaction Prediction

Dialogue Data Analysis

Distribution comparison between satisfactory (SAT-Dial) and unsatisfactory dialogues (unSAT-Dial)

User Intents

Seekers more often add details to indicate their preferences in unSAT-Dial

- unSAT-Dial: See, Add Details (i.e., Provide Preference, Answer, and Ask)
- SAT-Dial: Inquire

Recommender Actions

Providing explanations is likely to increase users' acceptance

• SAT-Dial: Explain (e.g., Explain-Introduction, Explain-Preference)

User Satisfaction Prediction

Binary Classification Problem

Given a fixed number (*N*) of turns in the dialogue, the goal is to predict if the user would eventually accept a recommendation.

- Classification Models
 - 8 Machine Learning Models: LR, SVM, Naive Bayes, XGBoost, MLP, etc.
- Features
 - Dialogue behavior features (i.e., user intents and recommender actions)
 - Utterance-level features (i.e., content, discourse, and sentiment features)

Eval	uation Metrics	Category	Features
0	Precision	Content	TF-IDF, Name Entity, # Relevant Items
0	Recall F1-score	Discourse	POS, 5W1H Question, Question Mark, Exclamation Mark, Utterance Length
		Sentiment	Thanks, Sentiment Score, Opinion Lexicon

Results - User Satisfaction Prediction (RQ3)

Comparison of Classification Models

Comparison of Feature Categories

Methods	Cont	Disc	Sent	Dial	Prec	Rec	F1	Method	Cont	Disc	Sent	Dial	Prec	Rec	F1
Logistic Regression	n 🗸	\checkmark		\checkmark	0.8488	0.5806	0.6795					\checkmark	0.8990	0.5681	0.6884
SVM		\checkmark		\checkmark	0.8778	0.5556	0.6629	MIP	\checkmark				0.6551	0.4944	0.5501
Naive Bayes				\checkmark	0.8833	0.5556	0.6651			\checkmark			0.5570	0.3486	0.4122
Decision Tree				\checkmark	0.7109	0.5528	0.6167				\checkmark		0.6067	0.2681	0.3606
Random Forest				\checkmark	0.8862	0.5306	0.6503		\checkmark	\checkmark	\checkmark	\checkmark	0.7995	0.5444	0.6292
XGBoost				\checkmark	0.7897	0.5653	0.6426	0.70) -[
MLP				\checkmark	0.8990	0.5681	0.6884			<u>^</u>				P vistic Pogros	sion
KNN			\checkmark	\checkmark	0.8850	0.5181	0.6427	V 0.65	'] 🖌				- - Dec	cision Tree	51011
								0.60) - 🛛						
								e ^{0.55}	5 -	$ \rangle$					*
	: N			ı ה (ана О Г	a 0.50) -					*	
	ion iv	loae	IS: IV	LP (best p	precisi	on & F	ן) י רו ₀.45	5 -	1				\checkmark	`
									Con	sider th	e previ	ous			
★ Effective F	eatur	es:						0.40	'] utte	rance-r	espons	e pair	' \		_
• Dialog	 Dialogue behavior features 														
(ie i	Iser i	ntent	s an	d ree	comm	ender	r actio	0.30) -						
(1.0.) 0				are			aotio	10)		1	2	3		4] 5
										- N	umber	of dialo	aue turn	S	20

Conclusions

Summary

- 1. Two hierarchical taxonomies established for user intents and recommender actions respectively
- User intent prediction: Some methods (such as XGBoost and SVM) can achieve outperforming accuracy by unifying four feature categories (i.e., content, sentiment, discourse, and context)
- 3. User satisfaction prediction: Leveraging both user intents and recommender actions enables some model like MLP to achieve competitive accuracy

Intent Annotation of Recommendation Dialogue (IARD) dataset is publicly available: <u>https://github.com/wanlingcai1997/umap_2020_IARD.git</u>

Future Work

- 1. To verify the taxonomies' generalizability to other dialogues and product domains
- 2. To label more dialogue data and identify whether deep learning (DL) methods would become superior when the dataset is enlarged
- 3. To investigate the temporal sequence of utterances/responses within a dialogue, which might act as potentially useful context features to further improve the prediction accuracy

Thanks! Q&A

Wanling Cai cswlcai@comp.hkbu.edu.hk Li Chen lichen@comp.hkbu.edu.hk

